Skip to main content

Natural language processing Previous year question paper(2013)

                    CS/B.Tech/CSE/SEM-8/CS-802F/2013
                                              2013
                    NATURAL LANGUAGE PROCESSING

Time Allotted : 3 Hours                                                                                   Full Marks : 70


                                         The figures in the margin indicate full marks.
                           Candidates are required to give their answers in their own words
                                                     as far as practicable.

                                                     GROUP – A
                                  ( Multiple Choice Type Questions )

1.  Choose the correct alternatives for the following.  10*1 = 10
i) Minimum edit distance is computed by
a) Phonology
b) Dynamic programming
c) Tautology
d) Hidden Markov Model ( HMM ).

ii) Word probability is calculated by
a) Likelihood probability
b) Prior probability
c) Baye's rule
d) none of these.

iii) Viterbi algorithm is used in
a) speech processing
b) Language processing
c) Speech & Language processing
d) none of these.

iv) The use of the period (.) is to specify
a) any context
b) any number
c) any character
d) none of these.

v) The use of | is to specify
a) disjunction of characters
b) disjunction of numbers
c) words sequence
d) none of these.

vi) Open class contains
a) nouns
b)verbs
c) both (a) and (b)
d) none of these

vii) In deleted interpolation algorithm, which symbol is used ?
a)  Î± 
b)  Î²
c)  Î³
d) μ

viii) Entropy is used to
a) measure the information
b)correct the information
c) detect the information
d) handle the noise.

ix) Subcategorize of verbs is classified into
a) Transitive
c) both (a) & (b)
b) Intransitive
d) none of these.

x) Phrase Structure Grammar is used in
a) a) Regular Grammar
b) Context–Free Grammar ( CFG )
c) Context–Sensitive Grammar ( CSG )
d) None of these.

                                                  GROUP -B
                                         ( Short Answer Type Questions )
                                      Answer any three of the following.   3*5=15

2 ) Define two level Morphology with suitable example. Briefly
describe the different types of Error Handling mechanism.                         3 + 2

3) Why POS ( Part – of – Speech ) Tagging is required in NLP
( Natural Language Processing ) ? Briefly compare the Top – Down & Bottom – Up Parsing techniques. 
                                                                                                   3+2
4) What is Regular Expression ? Write down the Regular
Expression for the following languages :
a) The set of all alphabetic strings
b) Column 1 Column 2 Column 3
c) 5.7 Gb.                                                                                       2+3

5) Write down the concept of feature structure. What is
unification ? What is Word Sense Disambiguation ( WSD ) ?
                                                                                                                2 + 1 + 2
6.Write down the differences between Inflectional Morphology
and Derivational Morphology with suitable example. What is
stem ? What is morpheme ?                                                                       3+1+1

                                                GROUP – C
                                 ( Long Answer Type Questions )
                          Answer any three of the followin  : 3*15 =45

7) a) Define wordform, lemma, type, token.
    b) Briefly describe the role of Finite State Tranducer
         ( FST ) with suitable example.
    c) Define prior probability and likelihood probability using Bayesian Method.
    d) What is Confusion Matrix ? Why is it required in NLP( Natural Language Processing ) ?                                                                                                                                                          4 + 5 + 4 + 2

8. a)Draw tree structure for the following ATIS sentences :
I perfer a morning flight
i want a morning flight
Using S-->NP VP
NP-->Pronoun|
Pronoun-Noun
|Det Nominal
Nominal-->|Noun Nominal
|Noun
VP-->verb
|Verb NP
|Verb NP PP
| Verb PP


b) Write rules expressing the verbal subcategory of English auxiliaries with example.
c)Define predeterminers, cardinal numbers, ordinal numbers and quantifiers with suitable examples.
d) How are Transformation Based Learning ( TBL ) Rules applied in NLP ( Natural Language Processing ) ?                                                                                                                  5 + 3 + 4 + 3

9. a) Compute Minimum edit by hand. Figure out whether the word intention is closer to the word execution and calculate a minimum edit distance.
b) Estimate p ( t / c ) as follows (where c p is the pth character of the word c ) using Kernigham et al. four confusion matrices, one for each type of single error.
c) Briefly describe Hidden Markov Model ( HMM ).
d) Compare open class & closed class word groups with suitable examples.                  6 + 3 + 4 + 2

10. a) What is Smoothing ? Why is it required ?
b) Write down the equation for trigram probability estimation.
c) Write down the equation for the discount d = c /c for add-one smoothing. Do the same thing used for Written Bell smoothing. How do they differ?                                                           2+1+3+5+4

11. Write short notes on any three of the following :         
a) Regular Expression Patterns
b) Orthographic Rules
c) Stochastic Part-of-Speech Tagging
d) HMM Tagging
e) Constituency & Agreement.                                      3*5=15
                                            
                                        --------------------------------------------------------
                                        -------------------------------------------------------

Comments

Popular posts from this blog

important question on Entity Relationship Model(ER Model)

5)A university registrar’s office maintains data about the following entities: (a) courses, including number, title, credits, syllabus, and prerequisites; (b) course offerings, including course number, year, semester, section number, instructor(s), timings, and classroom; (c) students, including student-id, name, and program; and (d) instructors, including identification number, name, department, and title. Further, the enrollment of students in courses and grades awarded to students in each course they are enrolled for must be appropriately modeled. Construct an E-R diagram for the registrar’s office. Document all assumptions that you make about the mapping constraints. Answer:   In the answer given here, the main entity sets are student, course, course-offering, and instructor. The entity set course-offering is a weak entity set dependent on course. The assumptions made are : a class meets only at one particular place and time. This E - R diagram cannot model a class meet

Library Management System DataFlow Diagram

Library Management System DataFlow Diagram 1) Zero Level DFD 2) 1st level DFD and 2nd level DFD

how to Install Numpy, Pandas and matplotlib on ubuntu 18.04 and Linux Mint

Install Python, NumPy,Matplotlib for Python 3 on Ubuntu 18.04, Linux Mint, Debian Linux. This is a short article about installing Numpy, Pandas , Matplotlib, Python3 on the latest Ubuntu 18.04 LTS, Linux Mint, Debian Linux which comes with Python 3.6.5. Let’s start by making sure we have an updated system: 1 sudo apt update 2 sudo apt upgrade Now, let’s install NumPy, Pandas,Matplotlib : sudo apt-get install python-pip sudo pip install numpy sudo pip install pandas sudo pip install matplotlib Test numpy : Open up a Terminal in Your Linux Operating System by running the following: python3 At the Terminal, type the following: >>> import numpy as np >>> np.__version__ '1.13.3'   Test Pandas : Open up a Terminal in Your Linux Operating System by running the following: python3 At the Terminal, type the following: >>> import pandas as pd >>> pd.__version__ '0.22.0'   Test Matpl